Variational Theory for Interpolation on Spheres

نویسندگان

  • Jeremy Levesley
  • Will Light
  • David Ragozin
  • Xingping Sun
چکیده

In this paper we consider the problem of developing a variational theory for interpolation by radial basis functions on spheres. The interpolants have the property that they minimise the value of a certain semi-norm, which we construct explicitly. We then go on to investigate forms of the interpolant which are suitable for computation. Our main aim is to derive error bounds for interpolation from scattered data sets, which we do in the nal section of the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MEAN VALUE INTERPOLATION ON SPHERES

In this paper we consider   multivariate Lagrange mean-value interpolation problem, where interpolation parameters are integrals over spheres. We have   concentric spheres. Indeed, we consider the problem in three variables when it is not correct.  

متن کامل

Stability for the gravitational Vlasov-Poisson system in dimension two

We consider the two dimensional gravitational VlasovPoisson system. Using variational methods, we prove the existence of stationary solutions of minimal energy under a Casimir type constraint. The method also provides a stability criterion of these solutions for the evolution problem. Key-words. Vlasov-Poisson system – stellar dynamics – polytropic gas spheres – gravitation – mass – energy – ki...

متن کامل

Freeform Curves on Spheres of Arbitrary Dimension

Recursive evaluation procedures based on spherical linear interpolation and stationary subdivision algorithms based on geodesic midpoint averaging are used to construct the analogues on spheres of arbitrary dimension of Lagrange and Hermite interpolation and Bezier and B-spline approximation.

متن کامل

Cardinal interpolation with polysplines on annuli

Cardinal polysplines of order p on annuli are functions in C2p−2 (Rn \ {0}) which are piecewise polyharmonic of order p such that ∆p−1S may have discontinuities on spheres in Rn, centered at the origin and having radii of the form ej , j ∈ Z. The main result is an interpolation theorem for cardinal polysplines where the data are given by sufficiently smooth functions on the spheres of radius ej...

متن کامل

Interpolation of curves using variational subdivision surfaces

We introduce a variational method to interpolate or approximate given curves on a surface by subdivision within a given tolerance. In every subdivision step some new points are determined by the interpolation constraint and the other new points are varied by solving an optimization problem to minimize some surface energies such that the resulting surfaces have high quality. This method is simpl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996